Files
notedeck/crates/notedeck_columns/src/timeline/note_units.rs
kernelkind 563fbb9c4b fix NoteUnits front insertion logic
Signed-off-by: kernelkind <kernelkind@gmail.com>
2025-09-13 15:18:29 -04:00

678 lines
23 KiB
Rust

use std::collections::{HashMap, HashSet};
use nostrdb::NoteKey;
use notedeck::NoteRef;
use crate::timeline::{
unit::{CompositeUnit, NoteUnit, NoteUnitFragment},
MergeKind,
};
type StorageIndex = usize;
/// Provides efficient access to `NoteUnit`s
/// Useful for threads and timelines
/// when reversed=false, sorts from newest to oldest
#[derive(Debug, Default)]
pub struct NoteUnits {
reversed: bool,
storage: Vec<NoteUnit>,
lookup: HashMap<UnitKey, StorageIndex>, // the key to index in `NoteUnits::storage`
order: Vec<StorageIndex>, // the sorted order of the `NoteUnit`s in `NoteUnits::storage`
}
impl NoteUnits {
pub fn values(&self) -> Values<'_> {
Values {
set: self,
front: 0,
back: self.order.len(),
}
}
pub fn contains_key(&self, k: &UnitKey) -> bool {
self.lookup.contains_key(k)
}
pub fn new_with_cap(cap: usize, reversed: bool) -> Self {
Self {
reversed,
storage: Vec::with_capacity(cap),
lookup: HashMap::with_capacity(cap),
order: Vec::with_capacity(cap),
}
}
pub fn len(&self) -> usize {
self.storage.len()
}
pub fn is_empty(&self) -> bool {
self.storage.is_empty()
}
/// Get the kth index from 0..Self::len
pub fn kth(&self, k: usize) -> Option<&NoteUnit> {
if k >= self.order.len() {
return None;
}
let idx = if self.reversed {
self.order[self.order.len() - 1 - k]
} else {
self.order[k]
};
Some(&self.storage[idx])
}
/// Core bulk insert for already-built `NoteUnit`s
/// Merges new `NoteUnit`s into `Self::storage`
/// Updates `Self::order`
fn merge_many_internal(
&mut self,
mut units: Vec<NoteUnit>,
touched_indices: &[usize],
) -> InsertManyResponse {
units.retain(|e| !self.lookup.contains_key(&e.key()));
if units.is_empty() && touched_indices.is_empty() {
return InsertManyResponse::Zero;
}
let mut touched = Vec::new();
if !touched_indices.is_empty() {
touched = touched_indices.to_vec();
touched.sort_unstable(); // sort for later reinsertion
touched.dedup();
self.order.retain(|i| touched.binary_search(i).is_err()); // temporarily remove touched from Self::order
}
units.sort_unstable();
units.dedup_by_key(|u| u.key());
let base = self.storage.len();
let mut new_order = Vec::with_capacity(units.len());
self.storage.reserve(units.len());
for (i, unit) in units.into_iter().enumerate() {
let idx = base + i;
let key = unit.key();
self.storage.push(unit);
self.lookup.insert(key, idx);
new_order.push(idx);
}
let inserted_new = new_order.len();
let front_insertion = if self.order.is_empty() || new_order.is_empty() {
!new_order.is_empty()
} else if self.reversed {
// reversed is true, sorting should occur less recent to most recent (oldest to newest, opposite of `self.order`)
let first_new = *new_order.first().unwrap(); // most recent unit of the new order
let last_old = *self.order.last().unwrap(); // least recent unit of the current order
// if the most recent unit of the new order is less recent than the least recent unit of the current order,
// all current order units are less recent than the new order units.
// In other words, they are all being inserted in the front
self.storage[first_new] >= self.storage[last_old]
} else {
// reversed is false, sorting should occur most recent to least recent (newest to oldest, as it is in `self.order`)
let last_new = *new_order.last().unwrap(); // least recent unit of the new order
let first_old = *self.order.first().unwrap(); // most recent unit of the current order
// if the least recent unit of the new order is more recent than the most recent unit of the current order,
// all new units are more recent than the current units.
// In other words, they are all being inserted in the front
self.storage[last_new] <= self.storage[first_old]
};
let mut merged = Vec::with_capacity(self.order.len() + new_order.len());
let (mut i, mut j) = (0, 0);
while i < self.order.len() && j < new_order.len() {
let index_left = self.order[i];
let index_right = new_order[j];
let left_unit = &self.storage[index_left];
let right_unit = &self.storage[index_right];
if left_unit <= right_unit {
// the left unit is more recent than (or the same recency as) the right unit
merged.push(index_left);
i += 1;
} else {
merged.push(index_right);
j += 1;
}
}
merged.extend_from_slice(&self.order[i..]);
merged.extend_from_slice(&new_order[j..]);
// reinsert touched
for touched_index in touched {
let pos = merged
.binary_search_by(|&i2| self.storage[i2].cmp(&self.storage[touched_index]))
.unwrap_or_else(|p| p);
merged.insert(pos, touched_index);
}
self.order = merged;
if inserted_new == 0 {
InsertManyResponse::Zero
} else if front_insertion {
InsertManyResponse::Some {
entries_merged: inserted_new,
merge_kind: MergeKind::FrontInsert,
}
} else {
InsertManyResponse::Some {
entries_merged: inserted_new,
merge_kind: MergeKind::Spliced,
}
}
}
/// Merges `NoteUnitFragment`s
/// `NoteUnitFragment::Single` is added normally
/// if `NoteUnitFragment::Composite` exists already, it will fold the fragment into the `CompositeUnit`
/// otherwise, it will generate the `NoteUnit::CompositeUnit` from the `NoteUnitFragment::Composite`
pub fn merge_fragments(&mut self, frags: Vec<NoteUnitFragment>) -> InsertManyResponse {
let mut to_build: HashMap<CompositeKey, CompositeUnit> = HashMap::new(); // new composites by key
let mut singles_to_build: Vec<NoteRef> = Vec::new();
let mut singles_seen: HashSet<NoteKey> = HashSet::new();
let mut touched = Vec::new();
for frag in frags {
match frag {
NoteUnitFragment::Single(note_ref) => {
let key = note_ref.key;
if self.lookup.contains_key(&UnitKey::Single(key)) {
continue;
}
if singles_seen.insert(key) {
singles_to_build.push(note_ref);
}
}
NoteUnitFragment::Composite(c_frag) => {
let key = c_frag.get_underlying_noteref().key;
let composite_type = c_frag.get_type();
if let Some(&storage_idx) = self.lookup.get(&UnitKey::Composite(c_frag.key())) {
if let Some(NoteUnit::Composite(c_unit)) = self.storage.get_mut(storage_idx)
{
if c_frag.get_latest_ref() < c_unit.get_latest_ref() {
touched.push(storage_idx);
}
c_frag.fold_into(c_unit);
continue;
}
}
// aggregate for new composite
use std::collections::hash_map::Entry;
match to_build.entry(CompositeKey {
key,
composite_type,
}) {
Entry::Occupied(mut o) => {
c_frag.fold_into(o.get_mut());
}
Entry::Vacant(v) => {
v.insert(c_frag.into());
}
}
}
}
}
let mut items: Vec<NoteUnit> = Vec::with_capacity(singles_to_build.len() + to_build.len());
items.extend(singles_to_build.into_iter().map(NoteUnit::Single));
items.extend(to_build.into_values().map(NoteUnit::Composite));
self.merge_many_internal(items, &touched)
}
/// Convienience method to merge a single note
pub fn merge_single_unit(&mut self, note_ref: NoteRef) -> InsertionResponse {
match self.merge_many_internal(vec![NoteUnit::Single(note_ref)], &[]) {
InsertManyResponse::Zero => InsertionResponse::AlreadyExists,
InsertManyResponse::Some {
entries_merged: _,
merge_kind,
} => InsertionResponse::Merged(merge_kind),
}
}
pub fn latest_ref(&self) -> Option<&NoteRef> {
if self.reversed {
self.order.last().map(|&i| &self.storage[i])
} else {
self.order.first().map(|&i| &self.storage[i])
}
.map(NoteUnit::get_latest_ref)
}
}
#[derive(Hash, PartialEq, Eq, Debug)]
pub struct CompositeKey {
pub key: NoteKey,
pub composite_type: CompositeType,
}
#[derive(Hash, PartialEq, Eq, Debug)]
pub enum CompositeType {
Reaction,
Repost,
}
#[derive(Hash, PartialEq, Eq, Debug)]
pub enum UnitKey {
Single(NoteKey),
Composite(CompositeKey),
}
pub enum InsertManyResponse {
Zero,
Some {
entries_merged: usize,
merge_kind: MergeKind,
},
}
pub struct Values<'a> {
set: &'a NoteUnits,
front: usize,
back: usize,
}
impl<'a> Iterator for Values<'a> {
type Item = &'a NoteUnit;
fn next(&mut self) -> Option<Self::Item> {
if self.front >= self.back {
return None;
}
let idx = if !self.set.reversed {
let i = self.front;
self.front += 1;
self.set.order[i]
} else {
self.back -= 1;
self.set.order[self.back]
};
Some(&self.set.storage[idx])
}
}
impl<'a> DoubleEndedIterator for Values<'a> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.front >= self.back {
return None;
}
let idx = if !self.set.reversed {
self.back -= 1;
self.set.order[self.back]
} else {
let i = self.front;
self.front += 1;
self.set.order[i]
};
Some(&self.set.storage[idx])
}
}
pub enum InsertionResponse {
AlreadyExists,
Merged(MergeKind),
}
#[cfg(test)]
mod tests {
use std::collections::{BTreeMap, HashSet};
use egui::ahash::HashMap;
use enostr::Pubkey;
use nostrdb::NoteKey;
use notedeck::NoteRef;
use pretty_assertions::assert_eq;
use uuid::Uuid;
use crate::timeline::{
unit::{
CompositeFragment, CompositeUnit, NoteUnit, NoteUnitFragment, Reaction,
ReactionFragment, ReactionUnit, RepostFragment,
},
NoteUnits, RepostUnit,
};
#[derive(Default)]
struct UnitBuilder {
counter: u64,
frags: HashMap<String, NoteUnitFragment>,
units: NoteUnits,
}
impl UnitBuilder {
fn counter(&mut self) -> u64 {
let res = self.counter;
self.counter += 1;
res
}
fn random_sender(&mut self) -> Pubkey {
let mut out = [0u8; 32];
out[..8].copy_from_slice(&self.counter().to_le_bytes());
Pubkey::new(out)
}
fn build_reac_frag(&mut self, reacted_to: NoteRef) -> NoteUnitFragment {
NoteUnitFragment::Composite(CompositeFragment::Reaction(ReactionFragment {
noteref_reacted_to: reacted_to,
reaction_note_ref: NoteRef {
key: NoteKey::new(self.counter()),
created_at: self.counter(),
},
reaction: Reaction {
reaction: "+".to_owned(),
sender: self.random_sender(),
},
}))
}
fn build_repost_frag(&mut self, reposting: NoteRef) -> NoteUnitFragment {
NoteUnitFragment::Composite(CompositeFragment::Repost(RepostFragment {
reposted_noteref: reposting,
repost_noteref: self.new_noteref(),
reposter: self.random_sender(),
}))
}
fn insert_repost(&mut self, reposting: NoteRef) -> String {
let repost = self.build_repost_frag(reposting);
let id = Uuid::new_v4().to_string();
self.frags.insert(id.clone(), repost.clone());
self.units.merge_fragments(vec![repost]);
id
}
fn insert_reac_frag(&mut self, reacted_to: NoteRef) -> String {
let frag = self.build_reac_frag(reacted_to);
let id = Uuid::new_v4().to_string();
self.frags.insert(id.clone(), frag.clone());
self.units.merge_fragments(vec![frag]);
id
}
fn insert_reac_frag_pair(&mut self, reacted_to: NoteRef) -> (String, String) {
let frag1 = self.build_reac_frag(reacted_to);
let frag2 = self.build_reac_frag(reacted_to);
self.units
.merge_fragments(vec![frag1.clone(), frag2.clone()]);
let id1 = Uuid::new_v4().to_string();
self.frags.insert(id1.clone(), frag1);
let id2 = Uuid::new_v4().to_string();
self.frags.insert(id2.clone(), frag2);
(id1, id2)
}
fn new_noteref(&mut self) -> NoteRef {
NoteRef {
key: NoteKey::new(self.counter()),
created_at: self.counter(),
}
}
fn insert_note(&mut self) -> String {
let note_ref = NoteRef {
key: NoteKey::new(self.counter()),
created_at: self.counter(),
};
let id = Uuid::new_v4().to_string();
self.frags
.insert(id.clone(), NoteUnitFragment::Single(note_ref.clone()));
self.units.merge_single_unit(note_ref);
id
}
fn expected_reactions(&mut self, ids: Vec<&String>) -> NoteUnit {
let mut reactions = BTreeMap::new();
let mut reaction_id = None;
let mut senders = HashSet::new();
for id in ids {
let NoteUnitFragment::Composite(CompositeFragment::Reaction(reac)) =
self.frags.get(id).unwrap()
else {
panic!("got something other than reaction");
};
if let Some(prev_reac_id) = reaction_id {
if prev_reac_id != reac.noteref_reacted_to {
panic!("internal error");
}
}
reaction_id = Some(reac.noteref_reacted_to);
reactions.insert(reac.reaction_note_ref, reac.reaction.clone());
senders.insert(reac.reaction.sender);
}
NoteUnit::Composite(CompositeUnit::Reaction(ReactionUnit {
note_reacted_to: reaction_id.unwrap(),
reactions,
senders: senders,
}))
}
fn expected_reposts(&mut self, ids: Vec<&String>) -> NoteUnit {
let mut reposts = BTreeMap::new();
let mut reposted_id = None;
let mut senders = HashSet::new();
for id in ids {
let NoteUnitFragment::Composite(CompositeFragment::Repost(repost)) =
self.frags.get(id).unwrap()
else {
panic!("got something other than repost");
};
if let Some(prev_reposted_id) = reposted_id {
if prev_reposted_id != repost.reposted_noteref {
panic!("internal error");
}
}
reposted_id = Some(repost.reposted_noteref);
reposts.insert(repost.repost_noteref, repost.reposter);
senders.insert(repost.reposter);
}
NoteUnit::Composite(CompositeUnit::Repost(RepostUnit {
note_reposted: reposted_id.unwrap(),
reposts,
senders,
}))
}
fn expected_single(&mut self, id: &String) -> NoteUnit {
let Some(NoteUnitFragment::Single(note_ref)) = self.frags.get(id) else {
panic!("fail");
};
NoteUnit::Single(*note_ref)
}
fn asserted_at(&self, index: usize) -> NoteUnit {
self.units.kth(index).unwrap().clone()
}
fn aeq(&mut self, units_kth: usize, expect: Expect) {
assert_eq!(
self.asserted_at(units_kth),
match expect {
Expect::Single(id) => self.expected_single(id),
Expect::Reaction(items) => self.expected_reactions(items),
Expect::Repost(items) => self.expected_reposts(items),
}
);
}
}
enum Expect<'a> {
Single(&'a String),
Reaction(Vec<&'a String>),
Repost(Vec<&'a String>),
}
#[test]
fn test_reactions1() {
let mut builder = UnitBuilder::default();
let reaction_note = builder.new_noteref();
let single0 = builder.insert_note();
builder.aeq(0, Expect::Single(&single0));
let reac1 = builder.insert_reac_frag(reaction_note);
builder.aeq(0, Expect::Reaction(vec![&reac1]));
builder.aeq(1, Expect::Single(&single0));
let single1 = builder.insert_note();
builder.aeq(0, Expect::Single(&single1));
builder.aeq(1, Expect::Reaction(vec![&reac1]));
builder.aeq(2, Expect::Single(&single0));
let reac2 = builder.insert_reac_frag(reaction_note);
builder.aeq(0, Expect::Reaction(vec![&reac2, &reac1]));
builder.aeq(1, Expect::Single(&single1));
builder.aeq(2, Expect::Single(&single0));
let single2 = builder.insert_note();
builder.aeq(0, Expect::Single(&single2));
builder.aeq(1, Expect::Reaction(vec![&reac2, &reac1]));
builder.aeq(2, Expect::Single(&single1));
builder.aeq(3, Expect::Single(&single0));
let reac3 = builder.insert_reac_frag(reaction_note);
builder.aeq(0, Expect::Reaction(vec![&reac1, &reac2, &reac3]));
builder.aeq(1, Expect::Single(&single2));
builder.aeq(2, Expect::Single(&single1));
builder.aeq(3, Expect::Single(&single0));
}
#[test]
fn test_reactions2() {
let mut builder = UnitBuilder::default();
let reaction_note1 = builder.new_noteref();
let reaction_note2 = builder.new_noteref();
let single0 = builder.insert_note();
builder.aeq(0, Expect::Single(&single0));
let reac1_1 = builder.insert_reac_frag(reaction_note1);
builder.aeq(0, Expect::Reaction(vec![&reac1_1]));
builder.aeq(1, Expect::Single(&single0));
let reac2_1 = builder.insert_reac_frag(reaction_note2);
builder.aeq(0, Expect::Reaction(vec![&reac2_1]));
builder.aeq(1, Expect::Reaction(vec![&reac1_1]));
builder.aeq(2, Expect::Single(&single0));
let single1 = builder.insert_note();
builder.aeq(0, Expect::Single(&single1));
builder.aeq(1, Expect::Reaction(vec![&reac2_1]));
builder.aeq(2, Expect::Reaction(vec![&reac1_1]));
builder.aeq(3, Expect::Single(&single0));
let reac1_2 = builder.insert_reac_frag(reaction_note1);
builder.aeq(0, Expect::Reaction(vec![&reac1_2, &reac1_1]));
builder.aeq(1, Expect::Single(&single1));
builder.aeq(2, Expect::Reaction(vec![&reac2_1]));
builder.aeq(3, Expect::Single(&single0));
let single2 = builder.insert_note();
builder.aeq(0, Expect::Single(&single2));
builder.aeq(1, Expect::Reaction(vec![&reac1_2, &reac1_1]));
builder.aeq(2, Expect::Single(&single1));
builder.aeq(3, Expect::Reaction(vec![&reac2_1]));
builder.aeq(4, Expect::Single(&single0));
let reac1_3 = builder.insert_reac_frag(reaction_note1);
builder.aeq(0, Expect::Reaction(vec![&reac1_2, &reac1_1, &reac1_3]));
builder.aeq(1, Expect::Single(&single2));
builder.aeq(2, Expect::Single(&single1));
builder.aeq(3, Expect::Reaction(vec![&reac2_1]));
builder.aeq(4, Expect::Single(&single0));
let reac2_2 = builder.insert_reac_frag(reaction_note2);
builder.aeq(0, Expect::Reaction(vec![&reac2_1, &reac2_2]));
builder.aeq(1, Expect::Reaction(vec![&reac1_2, &reac1_1, &reac1_3]));
builder.aeq(2, Expect::Single(&single2));
builder.aeq(3, Expect::Single(&single1));
builder.aeq(4, Expect::Single(&single0));
}
#[test]
fn test_reactions3() {
let mut builder = UnitBuilder::default();
let reaction_note1 = builder.new_noteref();
let single1 = builder.insert_note();
builder.aeq(0, Expect::Single(&single1));
let reac0 = builder.insert_reac_frag(reaction_note1);
builder.aeq(0, Expect::Reaction(vec![&reac0]));
builder.aeq(1, Expect::Single(&single1));
let (reac1, reac2) = builder.insert_reac_frag_pair(reaction_note1);
builder.aeq(0, Expect::Reaction(vec![&reac0, &reac1, &reac2]));
builder.aeq(1, Expect::Single(&single1));
let single2 = builder.insert_note();
builder.aeq(0, Expect::Single(&single2));
builder.aeq(1, Expect::Reaction(vec![&reac0, &reac1, &reac2]));
builder.aeq(2, Expect::Single(&single1));
}
#[test]
fn test_repost() {
let mut builder = UnitBuilder::default();
let repost_note = builder.new_noteref();
let single1 = builder.insert_note();
builder.aeq(0, Expect::Single(&single1));
let repost1 = builder.insert_repost(repost_note);
builder.aeq(0, Expect::Repost(vec![&repost1]));
builder.aeq(1, Expect::Single(&single1));
let single2 = builder.insert_note();
builder.aeq(0, Expect::Single(&single2));
builder.aeq(1, Expect::Repost(vec![&repost1]));
builder.aeq(2, Expect::Single(&single1));
let reac1 = builder.insert_reac_frag(repost_note);
builder.aeq(0, Expect::Reaction(vec![&reac1]));
builder.aeq(1, Expect::Single(&single2));
builder.aeq(2, Expect::Repost(vec![&repost1]));
builder.aeq(3, Expect::Single(&single1));
let repost2 = builder.insert_repost(repost_note);
builder.aeq(0, Expect::Repost(vec![&repost1, &repost2]));
builder.aeq(1, Expect::Reaction(vec![&reac1]));
builder.aeq(2, Expect::Single(&single2));
builder.aeq(3, Expect::Single(&single1));
let reac2 = builder.insert_reac_frag(repost_note);
builder.aeq(0, Expect::Reaction(vec![&reac1, &reac2]));
builder.aeq(1, Expect::Repost(vec![&repost1, &repost2]));
builder.aeq(2, Expect::Single(&single2));
builder.aeq(3, Expect::Single(&single1));
}
}